Abstract

In this lab we obtained experimental measurements of water height as a function of time of a
draining-tanks apparatus and compared the measured response data to modeled responses to
estimate a discharge coefficient for both tanks in the apparatus. The accuracy of our estimate was
determined graphically and quantitatively. We then validated the single-tank model results using
the results of our two-tank experiment. This experiment was run to strengthen the connection
between the theoretical models presented in lectures and the actual behavior of tank draining
behavior, devices, processes and systems which is accomplished through observation and
experimentation. This report presents our experimental theory, model, analysis, results, and
reflections. Our model for both the upper and lower tanks closely fit the original gathered data
which was analyzed both graphically and quantitatively except for certain parts. Our results from
the two-tank experiment were similar to our single-tank model results allowing us to validate
them both. Tanks and vessels are used extensively in the process industry for both batch and
continuous processes and the results from this experiment could possibly contribute to an
industry application.

Introduction

The drainage of a two-tank system was modeled using conservation of mass and orifice
relationships, as well as traditional simulation diagram techniques. The purpose of this exercise
was to compare the physical and model responses of the water height within each tank
independently, and the system as a whole.

This lab was conducted by a group of students remotely, so raw data was collected and provided
prior to analysis. Data was collected through the use of pressure transducers within each tank,
then analyzed after converting the voltage outputs of each sensor to meaningful height vs. time
data. In addition, the water height and time relationship was modeled theoretically to validate the
team’s experimental findings. In order to predict the behavior of the system as a whole, each
individual tank must be analyzed to determine a discharge coefficient which most appropriately
describes its behavior. To do this experimentally, standard error estimate values were optimized
to achieve the most accurate discharge coefficient possible. Then the team used these
coefficients, as well as other physical properties of each tank and system environment to
accurately refine and validate a model which captures the behavior of the experiment.

The overall objectives of the experiment were to describe the process of calibrating the tank
pressure transducers and operate the apparatus to obtain experimental measurements of water
height as a function of time. By the end of the exercise, the experimental and model responses
were used to obtain an accurate discharge coefficient, then validated single-tank models using a
two-tank experiment. The process of reaching our conclusions is documented through a
recapitulation of our method of analysis and a thorough discussion of our results and associated
learning.



Method of Analysis

To build up to the complex two tank system, the tanks are first modeled and simulated
individually.

Below is shown the schematic of both tanks.
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Figure 1: side by side schematic of each tank present in the system.
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Shown above are the two tanks, the key to the analysis is the use of conservation principles.
Specifically, in this case the application of conservation of mass rate form and conservation of
energy finite form. A; and A are the tanks’ respective surface areas. by and b are the tanks’
respective inner wall heights. a1 and a, are the tank’s respective drain pipe lengths. d1 and d, are
the tank’s respective outlet diameters. Cq1 and Cqz are the tanks’ respective orifice discharge
coefficients. Before applying any conservation principles, the free body diagrams must be
defined for each tank.
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Figure 2: side by side free body diagram of each tank present in the system.
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Shown above is the incompressible flow version of the rate form of conservation of mass
equation. Applying this equation to the free body diagrams yields the following (tank 1 then tank
2).
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Aqe P Vout1 (1.2)
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Where % is the change in height of the water level of the tank with respect to time. Using the

orifice volume flow rate equation which is derived from the modified Bernoulli equation, a
formula for Vv, can be derived.

2
Vout= Aout*Cqa® ;'((P1 —Py) + pege(z1 — 73)) (2.1)

The pressure at point 1 and point 2, P; and P, respectively are equal. p is the density of water.
Lastly, z, and z, are the heights of each Bernoulli point relative to the datum. The datum in this
scenario is the bottom of the output pipe, not the bottom of the tank. The reduced orifice volume
flow rate equation is shown below for tank 1 and tank 2 respectively.

Yout1= Aout1°*Car °\/2 *g*(21,tank1 — Z2,tank1)(2.2)

Youtz= Aoutz 'Cd2°\/2°g°(zl,tank2 = Za tankz) (2.3)

Next equations 1.1 and 1.2 are combined with 2.2 and 2.3 to form the model equations for both
tanks.

dhy
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To simply these equations, further substitutions of known variables for the distances are
necessary. Due to the location of the datum, a height must be added anytime the distance relative
to the bottom of the tank is referenced. This happens twice in each final equation. The offset
distance between the bottom of the tank and the outlet orifice is a; and a, for tank 1 and 2
respectively. This offsetting of dimensions does not apply for the distance from the bottom of the
orifice to the datum as this distance is 0.

dh,
Ape % T = _Aout1°Cd1°\/2°g'(0 = (h1 +a1))(3.3)




Aye dh,
dt

ta;= _AoutZ'CdZ'\/z'g'(O — (hy + a3)) (3.4)
To solve the equations, integrate both sides.

[rO_dh_ _ tZAoun: Cdl\/_dt—al (3.5)

hOl ,/h1+a1 0 2e A
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fhoz Jhataz fO 204, —e =t dt a, (3.6)

The result of this integration is used to compute the Cd values for each tank. The values from
these equations are essential to ensuring that the double tank model reflects the gathered data as
accurately as possible. h,; and h,, are the heights from the bottom of each respective tank.

he (8) = (Jhgy T a— S0 2 g, (37)
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Figure 3: Free body diagram of both tanks.



Once the tanks have been modeled individually the transition to a double tank system is
straightforward. Recall equations 1.2 and 2.3 for conservation of mass rate form. Simply equate
the new tank 2 inlet volumetric flowrate with the outlet volumetric flowrate from tank 1 and the
double tank draining simulation equations have been fully derived. The tank 1 outlet flow rate
was derived in equations 3.3 and 3.4.

dhy _ Aout1°Cdiey/2°g°(h1+ay) (4.1)
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Results and Discussion

The dimensions of the upper and lower tanks and their outlets were provided to us by professors
Burchett, Cunningham, and Danesh and recorded in Table 1. The cross-sectional areas of the
tanks and corresponding orifices are shown in Table 2.

Table 1. Parameters describing the physical dimensions of each tank

Tank width | Tank depth Orifice Outlet height Outlet inset
Tank . . . . .
(in) diameter (in) (in) (in)
0.5
Upper 7.25 3.3125 0.359 3.375
Lower 7.25 3.3125 0.237 3.375 0.75

Table 2. The cross sectional area of each tank and corresponding orifice in square inches

Tank Tank Area Orifice Area
(in%) (in%)

Upper 24.0156 0.1012

Lower 24.0156 0.0441

As a first step the discharge coefficient values were assumed to be 0.7. Using equations 3.7 and
3.8 and MATLAB’s optimization functions the optimum C, values were calculated. To quantify
the difference between the model and the data we used a standard error estimate (SEE)

/\/ igl(xmodel, i_xdata,i)z
SEE = — (5.1)

where n is the number of data points. The optimization was designed to minimize the SEE
values. The model was simulated with the original and optimized C, values and plotted against
the data. This is shown in Figures 1 and 2. The discharge coefficients and SEE values for both
the initial and optimized model for the upper and lower tank are shown in Table 3.
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Figure 4. A comparison of the experimental and computed heights measured in inches versus
time measured in seconds. Displays the upper tank with C, set to 0.7 as well as the optimized C,
of 0.75.
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Figure 5. A comparison of the experimental and computed heights measured in inches versus
time measured in seconds. Displays the lower tank with C set to 0.7 as well as the optimized C,
of 0.89.



Table 3. Initial and optimized discharge coefficients and SEE values for both the upper and

lower tank.
Upper tank Lower tank
Discharge coefficient, Discharge
Case c, SEE (in) coefficient, c, SEE (in)
Initial model 0.7 0.2878 0.7 0.9436
Optimized model 0.75 0.1100 0.89 0.0863

The experimental data for both tanks was plotted alongside the model data in Figure 3 to
visualize how closely our models fit the gathered data. Table 4 also compares the measured and
simulated responses for specific times.
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Figure 6. Plot of modeled and gathered data of the two tank systems with optimized C,’s. Water
height is plotted in inches versus Time measured in seconds.

Table 4. Measured and simulated responses for specific times.

Case

Time for upper tank to

Time for lower level to

Time for the lower tank to

empty drain to a level of 3 inches drain to a level of 1 inch
Measured 27.0616 s 79.1139 s 60.9824 s
Predicted 26.6809 s 79.9308 s 60.9583 s
Percent 1.417% 1.027% 0.039%

Difference




Overall, the model fit the gathered data well. In Table 5, the percent differences between the
measured and predicted times were extremely small. The lowest percent difference was between
the measured and predicted time for the lower tank to drain to a level of 1 in. at 0.039%. The
highest percent difference was between the measured and predicted time for the upper tank to
empty at 1.417%. As seen in Figure 3, the model of the upper tank fits closely to the gathered
data especially after the water height of the lower tank is constant at about 25 seconds. The
model of the upper tank fits less closely than the lower tank especially around the peak of the
curve. After about 50 seconds, the model fits the gathered data more closely. The fit between our
model and gathered data can be quantitatively described by the calculated SEE values which are
0.1100 and 0.0863 for the upper and lower tank respectively.

The differences between our model and the gathered data can be attributed to several factors
related to the physical aspects of the experimental set up as well as the assumptions that we used
to derive the equations we used to calculate certain values. With the chosen way that the
experiment is set up there are certain losses that occur that affect the model’s fit to the data. Loss
occurs at the orifice exit due to the fact that the outlets are not perfectly smooth. Since not all the
water in the tank will leave the tank due to surface tension at the inner wall height there is also
loss there as well. We also assume that the water from the upper tank to the lower tank is
instantaneous and without resistance. However, there was a loss of water due to the water
spending a certain amount of time in the air when traveling between the two tanks and any
splashes that occur when the water contacts the surface of the water in the second tank. This
would explain why the discrepancy between the model and the data around the peak of the lower
tank is significantly larger than other times on the figure. The loss from the splashing increases
as the height of the water increases and gets closer to the actual height of the tank.

There were also several assumptions made to model the two-tank system for calculations that are
not entirely accurate. One assumption that we make is that the water used in the experiment is
incompressible allowing us to treat density as a constant. Even though clean water is used in
each experiment run, water from the Terre Haute area is very heavy which causes dirt and debris
to accumulate in the tanks and orifices over time. This means that our assumption that the water
is incompressible is not entirely correct as the water is not the “same substance” throughout. This
would also contribute to the water losses described earlier. In our model, we assume that the
change in height of the water tank level is slow enough that we can also assume that the flow is
steady-state. However, if the orifice area becomes large enough or the tank drains fast enough
effects from an unsteady flow will start to dominate. This explains why at the times our tank
starts to drain faster, at the linear region of the upper tank data and at the peak of the lower tank
data, we also see the biggest discrepancy between the model and the data.

These results were used to compare the measured response data to modeled responses to estimate
a discharge coefficient for both the upper and lower tank as well as quantitatively and
qualitatively see how accurate our estimate was as stated in the lab objective. We were also able



to validate the single-tank model results using results of a two-tank experiment by achieving
nearly identical graphical results.

Conclusion and Recommendations

In this lab, the behavior of a two-tank system was effectively modeled through the determination
and optimization of drainage coefficients using experimental data provided to the team, and the
use of conservation principles and the orifice relationships. Voltage sensor readings were
converted to water height data over time.

The standard error estimate was minimized over a centered range of drainage coefficients for
each tank using MATLAB, then each coefficient was used to predict the height vs. time
relationship for a theoretical system using the same operating parameters as the experiment itself.
Through optimization techniques, the group determined a drainage coefficient of 0.75 for the
upper tank, and 0.89 for the lower tank which corresponded to standard error values of 0.11 and
0.86 respectively. These coefficients allowed the model fits to very closely predict the
experimental data. For the upper tank, the group’s drain-time prediction was just 1.4% off of the
experimental value, and just 0.039% different from the measured value for the lower tank.

Factors that hindered an error free prediction include non-instantaneous flow between the tanks,
splashing of water, imperfections in the water, or losses due to unsteady flow. Some of these
factors are absorbed by an adjusted drainage coefficient, but some would lead to inconsistency in
the results of the experiment. To isolate our findings from these factors in the lab, the group
might have tried to use filtered or distilled water, use new tanks with smoothened outlets, and
would have adjusted the position of each tank to minimize splashing.
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clc

clear variables

close all

%% Calibration

'A2:B11");
'A2:B11");

uppercal = xlsread('sys9 cal data.xlsx', 'Upper',

lowercal = xlsread('sys9 cal data.xlsx',

'Lower',

’

CalUpperH = uppercal (:,1

4 4

CalUpperV = uppercal
CallLowerH
CallowerV
fit = polyfit (CalUpperH,CalUpperV,1);
ml = fit (1)

bl = fit(2);

vfit upper = ml*CalUpperH+bl;

fit = polyfit(CallLowerH,CalLowerV,1);
m2 = fit(1);

b2 = £fit (2);

vfit lower = m2*CalLowerH+b2;

[

%% Calibration plots

’

’

)
(:,2)
lowercal (:,1)
(:,2)

lowercal (:,

supper

figure (1)

plot (CalUpperH, CalUpperV, 'ko',CalUpperH,viit upper)
legend ('Transducer Output', 'Calculated line')
ylabel ('Volts[V]")

xlabel ('Height[in] ")

$Lower

figure (2)

plot (CalLowerH,CalLowerV, 'ko',CalLowerH,vfit lower)
legend ('Transducer Output', 'Calculated line')
ylabel ('Volts[V]")

xlabel ('"Height[in] ")

[}

%% Conversion

upper data = xlsread('sys9 upper ic 9in.csv');
lower data = xlsread('sys9 lower ic 9in.csv');
upper_t = upper data(:,1);

upper v = upper_ data
lower t lower data

(:
(:
(:
lower v = lower data(:

upper t = upper t - upper t(l);
lower t = lower t - lower t(l);
h upper convert = ((upper v - bl)/ml) ;
((lower v - Db2)/m2);
save tankdata upper upper t h upper convert

h lower convert =

save tankdata lower lower t h lower convert

-3
[SRre)

figure (3)
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plot (upper t,h upper convert)
figure (4)
plot (lower t,h lower convert)

oe
o\°

g=386.4; % in/s"2
hoU=h_ upper convert(1l);
hoL=h lower convert(1l);
TankWidth=7.25; % in
TankDepth=3.3125; % in
InsetUpper=0.5; % in

InsetLower=0.75; % in
OrificeDU=0.359; % in
OrificeDL=0.237; % in

aU=3.375; % in
al=3.375; % in

Cd=0.7;
AU=TankWidth*TankDepth;
AoU=pi* (OrificeDU"2) /4;
AL=TankWidth*TankDepth;
AoL=pi* (OrificeDL"2)/4;

oe
oe

t = upper t;

hU ogcd = ((sqgrt (hoU+aUlU) - (Cd*AoU/2/AL*sqrt (2*g))*t)."2)-aU;
plot (upper t,hU ogcd)
t = lower t;

hL ogcd = ((sqgrt(hoL+al)-(Cd*AoL/2/AL*sqrt (2*g))*t)."2)-aL;

o\°

SEE optimization
UPPER
program to identify the discharge coefficient
Cd0 = 0.7; % starting value for Cd

e oo o°

options = optimset (@fminsearch);
options = optimset (options, 'Display', 'iter');
coeffs = fminsearch(@lab4 perf index upper,Cd0,options);

Q

Cd upper OPTIMIZED = coeffs(l); % this is the optimum Cd, we only had one input
LOWER

program to identify the discharge coefficient

Cd0 = 0.7; % starting value for Cd

options = optimset (@fminsearch);

o
o
o
o

options = optimset (options, 'Display', 'iter');
coeffs = fminsearch(@lab4 perf index lower,Cd0,options);
Cd _lower OPTIMIZED = coeffs(l); % this is the optimum Cd, we only had one input

oo
[CRe)

Cd = Cd upper OPTIMIZED;
t = upper t;
hU OPTIMIZED = ((sqrt (hoU+alU) - ((Cd*AoU*sqgrt (2*g))/(2*AU))*t)."2)-aU;
Cd = Cd lower OPTIMIZED;
t = lower t;
hL OPTIMIZED = ((sqrt (hoL+al)-((Cd*AoL*sqgrt (2*g))/(2*AL))*t)."2)-aL;
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figure (5)

plot (upper t,hU ogcd,upper t,h upper convert,'.b',upper t,hU OPTIMIZED)

legend ('Original Cd'
xlabel ("time[s] ")
ylabel ("height[in]")

figure (6)

'Collected Data', 'Optomized Cd')

plot (lower t,hL ogcd,lower t,h lower convert,'.b',6 lower t,hL OPTIMIZED)

legend ('Original Cd'
xlabel ("time[s]")
ylabel ("height[in]")

%% Double Tanks

'Collected Data', 'Optomized Cd')

double data = xlsread('sys9 two tank ic 7in 5in.csv');
double t = double data(:,1) - double data(l,1);
double tl = ((double data(:,2) - bl)/ml) ;

double t2 = ((double data(:,3) - b2)/m2);

[

maxstep=0.01;%s
tol=le-6;%s

tf=max (double t);%s
g=32.2*12;%in/s"2
Al=AU; %in"2
A2=AL;%in"2

cdl=Cd upper OPTIMIZED; *unitless
cd2=Cd lower OPTIMIZED; %unitless

aol=AoU; %in"2
ao2=AoL; %in"2
al=alU;%in

az=alL;%in

hlo=double tl(l);%in
h2o=double t2(1);%in

dbl = .5;%in
db2 = .75;%in

oe
o\

sim('prelabd v2'")

oe
o\

[

figure(7) %
hold on

plot (tout,hl, 'g")
plot (tout,h2,'c")
xlabel ('Time[s] ")

ylabel ('Water Height[in]"')

plot (double t,double tl,'.b')
plot (double t,double t2,'.r')
legend ('Modeled Upper tank' , 'Modeled Lower tank', 'Data Upper tank', 'Data Lower tank')

%% calculate SEEs
$initial model
clear delta

clear delta sqgq
SLOWER
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for i = l:length(hL ogcd)

delta = hL ogcd(i) - h lower convert(i);% differece between model and data
delta sq(i) = (delta)”2; %n square the differen

end

delta sq vec sum = sum(delta sq);% apply the sum

o

SEE lower OG = sqrt(delta_sq_vec_sum/(length(hL_ogcd)—Z));6 take the square and divide byt'
denominator

clear delta

clear delta sqgq

$SUPPER

for i = 1l:length (hU_ogcd)
delta = hU ogcd(i) - h upper convert(i);% differece between model and data
delta sq(i) = (delta)”2; %n square the differen

end

delta sg vec sum = sum(delta sq);% apply the sum

SEE_upper OG = sqgrt(delta sg vec_ sum/ (length (hU ogcd)-2));% take the square and divide byf'
denominator

clear delta

clear delta sqg

$optomized model

$UPPER

for i = l:length(hU _OPTIMIZED)
delta = hU OPTIMIZED (i) - h upper convert(i);% differece between model and data
delta sq(i) = (delta)”2; %n square the differen

end

delta sqg vec sum = sum(delta sq);% apply the sum

SEE upper OPT = sqrt(delta_sq_vec_sum/(length(hU_OPTIMIZED)—Z));% take the square and¢

divide by denominator

clear delta

clear delta sqg

SLOWER

for i = l:length(hL_OPTIMIZED)
delta = hL OPTIMIZED(i) - h lower convert(i);% differece between model and data
delta sq(i) = (delta)”2; %n square the differen

end

delta sq vec sum = sum(delta sq);% apply the sum

SEE lower OPT = sqrt(delta_sq_vec_sum/(length(hL_OPTIMIZED)—2));% take the square andv¢’

divide by denominator

clear delta

clear delta sqg

%% Discussion results

tnkl shrt = double t1(48:52);

tnk2 shrt = double t2(116:156);

tl shrt = double t (48:52);

t2 shrt = double t(116:156);

tl empty = interpl (tnkl shrt,tl shrt,.5, 'linear', 'extrap');
t2 3in = interpl (tnk2 shrt,t2 shrt,3,'linear', 'extrap');

t2 1lin = interpl (tnk2 shrt,t2 shrt,1,'linear', 'extrap');

hl shrt = hl(2351:2551);
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h2 shrt = h2(5703:7853);
toutl tout (2351:2551);
tout?2 tout (5703:7853) ;

tl empty SIM = interpl (hl shrt,toutl,.5, 'linear', 'extrap');
t2 3in SIM interpl (h2 shrt, tout2,3, 'linear’', 'extrap');
t2 1lin SIM interpl (h2 shrt, tout2,1, 'linear', 'extrap');

fprintf ('upper tank empties in $f s\n',tl empty)
fprintf ('upper tank is at 3 in at %f s\n',t2 3in)

(

(
fprintf ('lower tank is at 1 in at Sf s\n',t2_lin)
fprintf ('simulated upper tank is empty at %f s\n',tl empty SIM)
fprintf ('simulated lower tank is at 1 in at %f s\n‘,t2_3in_SIM)
fprintf ('simulated upper tank is at 3 in at %f s\n', t2 1in SIM)
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function SEE = lab4 perf index lower (Cd)
% Simulate tank model
% Physical Parameters
g=386.4; % in/s"2
TankWidth=7.25; % in
TankDepth=3.3125; % in

InsetUpper=0.5; % in

[
-3

InsetLower=0.75;
OrificeDU=0.359;
OrificeDL=0.237;
aU=3.375; % in

al=3.375; % in

AU=TankWidth*TankDepth;
AoU=pi* (OrificeDU"2) /4;
AL=TankWidth*TankDepth;
AoL=pi* (OrificeDL"2)/4;

o® oo o°
=
o}

in

o\

\o

hO = 8.9; % initial condition from bottom of tank - HARDCODE
load tankdata lower % This will load the experimental time and fluid heights

hoL=h lower convert(l);
t = lower t;

hmodel = ((sqgrt (hoL+al)-((Cd*AoL*sqgrt(2*g))/ (2*AL))*t)."2)-aL;

equation here for height from bottom

SEE = sqgrt(sum((hmodel-h lower convert).”2)./(length (hmodel)-2));

end

put your theoreticaly
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function SEE = lab4 perf index upper (Cd)
% Simulate tank model

Physical Parameters
g=386.4; % in/s"2

TankWidth=7.25; % in
TankDepth=3.3125; % in
InsetUpper=0.5; % in

[
3

InsetLower=0.75;
OrificeDU=0.359;
OrificeDL=0.237;
aU=3.375;
al=3.375; % in

AU=TankWidth*TankDepth;
AoU=pi* (OrificeDU"2) /4;
AL=TankWidth*TankDepth;
AoL=pi* (OrificeDL"2)/4;

o° oo o°
=
o}

-
-3

in

° oo

hO = 8.6; % initial condition from bottom of tank - HARDCODE
load tankdata upper % This will load the experimental time and fluid heights

hoU=h upper convert (1);

t = upper t;

hmodel =((sqgrt (hoU+aU) - ((Cd*AoU*sqgrt (2*g))/(2*AU))*t)."2)-aU;

equation here for height from bottom

SEE = sqgrt (sum( (hmodel-h upper convert).”2)./(length (hmodel)-2));

end

put your theoretical¥



