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COMPARISON OF THE IMPACT OF A LEO AND A MEO            
CONSTELLATION ON SELECTED OBSERVATORIES 

Benjamin Salak* 

The purpose of this paper is to examine how satellite constellations in medium 

Earth orbit (MEO) and low Earth orbit (LEO) impact observatories. The approach 

used to study the impact on these constellations is to simulate the motion of the 

constellations and determine how often they are above a set of selected observa-

tories. The resulting impact is quantified by how many times satellites are present 

within different fields of view. An individual LEO or MEO constellation does not 

have a significant impact on usable observatory hours, with time lost ranging from 

1 minute to 5 hours over an 84-hour period of darkness. The introduction of mul-

tiple LEO and MEO constellations would further decrease the usable observatory 

hours.  

INTRODUCTION 

Satellite constellations are becoming more and more common. In 2022, there were approxi-

mately 5,500 satellites in orbit, with some projections estimating that by 2030 there will be over 

58,000.1 The main driver of this expansion are low Earth orbit satellite (LEO) constellations.1 LEO 

orbits are from 300 km to 2,000 km above the Earth’s surface. The other two major orbital catego-

ries are medium Earth orbits (MEO) from 2,000 km to 35,000 km and geosynchronous orbits 

(GEO), which are located at 35,686 km above the Earth’s surface.2 LEO constellations offer nu-

merous benefits. Since LEO satellites are lower, communications are quicker, and images have a 

greater resolution than those with the same equipment from MEO and GEO satellites. However, 

LEO constellations do have drawbacks. LEO satellites can only view one location on Earth for 

approximately 10 minutes before moving out of range, meaning that for continuous communication, 

more satellites are needed in LEO than in MEO constellations.2 The need for more satellites in-

creases maintenance costs.2 The impact of all these satellite clusters is being felt in the astronomy 

community. Figure 1 is an image from the CTIO/NOIRLab/NSF/AURA/DECam DELVE Survey. 

The impact of the satellite trails is clearly visible. 
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Figure 1. Deep Field Image with Satellite Trails. 

Recently a satellite from Applied Satellite Technology named Blue Walker 3 was launched into 

orbit. This new communications satellite has reached a peak magnitude of 0.4.* This magnitude is 

comparable to some of the brightest stars visible to the naked eye from Earth. The Blue Walker 3 

is stationed in LEO; however, MEO is another orbit category that is considered a “goldilocks zone” 

and poised for increased use as it has lower latency than GEO orbits and better Earth coverage per 

satellite than LEO orbits.† Both LEO and MEO constellations are analyzed in this paper.  

LITERATURE REVIEW 

The purpose of this literature review is to discuss the published knowledge focused on examin-

ing the impact of satellite constellations on observatories. “Impact of Satellite Constellations on 

Astronomical Observations with ESO Telescopes in the Visible and Infrared Domains” by Oliver 

R. Hainaut and Andrew P. Williams provides a focused analysis on this topic. The major difference 

in the analysis conducted for this paper and the one described in the Hainaut and Williams paper is 

that this is a simulation-based analysis, while their analysis used statistical distributions. Hainaut 

and Williams provide the following conclusion, which they characterize as conservative: wide field 

images from visual Earth-based telescopes will be severely affected.3 They also note that detailed 

simulation using actual satellite orbits will be needed to refine their estimates.3 This current paper 

provides a detailed simulation for certain orbital constellation conditions. 

 
* www.space.com/bluewalker-3-prototype-satellite-brightest-objects-sky 
† www.kratosdefense.com/constellations/articles/is-meo-poised-for-new-growth-as-satellite-market-shifts 
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The second paper that discusses the impact of satellite constellations on observatories is “Impact 

of Satellite Constellations on Optical Astronomy and Recommendations toward Mitigations,” by 

Connie Walker.4 The conclusions of this paper focus on satellite altitude and how it affects observa-

tories. LEO satellites under 600 km have the least impact on observatories as the intersections occur 

during the twilight hours; however, satellites above 600 km are illuminated during the night (not 

only at twilight) and therefore have a greater impact. Each altitude range primarily impacts ob-

servatories located at the middle latitudes.4 Walker’s paper leverages data provided by Oliver Hai-

naut, who co-authored the first paper described above. The goal of this current paper is to produce 

results using simulated constellations for multiple observatories in different latitudes. 

METHODS 

Low Earth Orbit (LEO) 

The LEO constellation used in this paper is a hypothetical constellation that provides 90% to 

95% Earth coverage but has no real-world twin. This coverage is based on a 90% to 95% Earth 

coverage model from the Congressional Budget Office (CBO) large constellation report.2 Figure 2 

shows pictures of the LEO constellation taken from this report. 

 

 

Figure 2. LEO Constellation Layout. 

 

This constellation relies on orbits with altitudes of 1,000 km. The constellation includes 72 sat-

ellites. There are six evenly spaced orbit planes at 80 degrees of inclination with 12 evenly spaced 

satellites in each orbit plane. 

Middle Earth Orbit (MEO) 

The MEO constellation is a hypothetical constellation that provides coverage comparable to that 

of the LEO and also has no real-world twin. This coverage is also based on a 90% to 95% Earth 

coverage model from the CBO large constellation report.2 Figure 3 shows a picture of the MEO 

constellation. 
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Figure 3. MEO Constellation Layout. 

 

This constellation relies on orbits with altitudes of 18,000 km. The constellation includes eight 

satellites. There are two orbit planes at 45 degrees of inclination with four evenly spaced satellites 

in each orbit plane. 

Observatory Selection 

A subset of the observatories with the largest telescopes on Earth was compiled and is shown in 

Table 1. The five locations are spread out across latitudes and longitudes to ensure potential effects 

of the satellite constellations can be documented on different continents. 

 

Table 1. Observatory Data. 

Observatory  Location  Telescope  

Size (m) 

Latitude 

(deg) 

Longitude 

(deg) 

Time Zone 

UTC 

1. Extremely Large 

Telescope 

(ELT)  

Cerro Armazones, 

Chile  

39 -24.5894  

  

-70.1919  

  

-3 

2. Thirty Meter  

Telescope 

(TMT)  

Mauna Kea,  

Hawaii  

30 19.8327  

  

-155.4816  

  

-10 

3. Gran Telescopio 

Canarias (GTC)  

La Palma, Spain  10.4 28.7561  

  

-17.8917  

  

0 

4. Hobby-Eberly  Fort Davis, Texas  10 30.6814  

  

-104.0147  

  

-6 

5. South African 

Large Telescope 

(SALT)  

Karoo,  

South Africa  

9.8 -32.3759  

  

20.8108  

  

2 

 

These observatories are important as they are all large visual observatories. The wide field visual 

astronomy telescopes are the observatories the most at risk from satellite intersections. Enormous 

investments have been made in these large installations, and some were built in isolated, high alti-

tude, desert-like areas to escape clouds and light pollution.  
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Method of Simulation 

A MATLAB based simulation is used to simulate the satellite positions. The simulation relies 

on elliptic f and g functions to calculate a new location for the satellite after a delta time. This new 

location is evaluated to see if it intersects with the observatory. The new location is also evaluated  

to determine if the satellite is illuminated by the sun. The simulation time is evaluated to determine 

if it is nighttime at the observatory that the satellite is intersecting. This analysis process will repeat 

for the entire simulation time. 

Since the constellations are provided by the CBO report, the orbital elements can be defined for 

each satellite, and the satellite’s initial position can be defined. The simulation uses input parame-

ters a, e, i, 𝜃0
∗, 𝜔, and 𝛺. The a value is the semi-major axis, which is the radius of the orbit, since 

all the orbits in this analysis are circular. The e value is the eccentricity, which is 0 since the orbits 

are all circular. The i value represents inclination and varies depending on which orbit is being 

analyzed. The 𝜃0
∗ value represents the true anomaly, which varies depending on the satellite in each 

orbit. The initial 𝜃0
∗ values are all known quantities. The 𝜔 represents the argument of periapsis. 

The 𝛺 represents the right ascension of the ascending node (RAAN). The 𝜃 value represents the 

argument of true anomaly, which is the sum of 𝜔 and 𝜃0
∗.  

From the orbital element values, the radius vector, �̅�perifocal, can be calculated. This vector is 

the 3D position of the satellite relative to the focus of the orbit, in this case Earth. The easiest way 

to express this vector is in the perifocal frame.  

The perifocal frame is defined with the e vector pointing toward the periapsis, the p vector 

pointing in the orbital plane in the direction of a true anomaly angle of 90 degrees, and the q vector 

pointing out of the orbital plane in the direction of the angular momentum vector. Equation (2) is 

the formula for the perifocal frame.  

Where h is the specific angular momentum defined in Equation (1).  

ℎ =  √𝜇Earth ∙ a ∙ (1 + 𝑒) (1) 

�̅�perifocal =  
ℎ2

𝜇Earth
∙

1

1 + 𝑒 ∙ cos (𝜃0
∗)

∙ [
cos (𝜃0

∗)

sin (𝜃0
∗)

0

] 
(2) 

 

Next the velocity vector, �̅�perifocal, can be calculated from the same orbital elements. The result, 

also in the perifocal frame, is expressed below with Equation (3): 

  

�̅�perifocal =   
𝜇Earth

ℎ
∙ [

−sin (𝜃0
∗)

𝑒 + cos (𝜃0
∗)

0

] 

  

(3) 

With the r and v values represented as vectors in the perifocal frame, a transformation is used 

to represent the vectors in an XYZ frame. This is done to move to a universal coordinate system 

instead of the orbit-specific perifocal systems. The perifocal coordinate system is orbit specific as 

the p and q quantities are relative to the orbital plane of each orbit. The XYZ frame is centered at 

Earth so all satellite positions can be compared. The direction cosine matrix (DCM) to move be-

tween these frames is given in Equation (4), where c is cosine and s is sine.  
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𝐷𝐶𝑀 =  [

𝑐𝛺𝑐𝜃 −  𝑠𝛺𝑐𝑖𝑠𝜃 −𝑐𝛺𝑠𝜃 −  𝑠𝛺𝑐𝑖𝑐𝜃 𝑠𝛺𝑠𝑖

𝑠𝛺𝑐𝜃 + 𝑐𝛺𝑐𝑖𝑠𝜃 𝑐𝛺𝑐𝑖𝑐𝜃 −  𝑠𝛺𝑠𝜃 −𝑐𝛺𝑠𝑖

𝑠𝑖𝑠𝜃 𝑐𝜃𝑠𝑖 𝑐𝑖

] 

 

 

(4) 

      

By using the DCM from Equation (4), the �̅�perifocal and �̅�perifocal vectors defined in the perifo-

cal frame from Equations (2) and (3) can be transformed into this Earth-centered XYZ frame. The 

�̅�XYZ and �̅�XYZ vector transformations are Equations (5) and (6), respectively. 

 

�̅�XYZ = 𝐷𝐶𝑀 ∙ �̅�perifocal 

 

(5) 

 

�̅�XYZ = 𝐷𝐶𝑀 ∙ �̅�perifocal 

 

(6) 

With the position and velocity of the satellite established at its initial position, the relationship 

between this position and the initial time, defined from the time since periapsis, must also be es-

tablished. The variable 𝑡𝑜 represents this initial time and can be computed.  

This value is dependent on the eccentric anomaly, E, which is defined in Equation (7). 

  

𝐸 = 2 ∙ atan (
𝜃0

∗

2
) ∙ √

1 − 𝑒

1 + 𝑒
 

  

(7) 

The mean anomaly, M, can then be calculated, as shown in Equation (8). 

  
𝑀 = 𝐸 − 𝑒 ∙ sin(𝐸) 

  

(8) 

The orbital period, P, which is computed in Equation (9), is also needed to find the time since 

periapsis.  

  

𝛲 =
2 ∙ 𝜋

𝜇Earth
∙ 𝑎

3
2 

 

(9) 

The results from Equations (8) and (9) are used to compute the time since periapsis, 𝑡𝑜, with 

Equation 10. 
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𝑡𝑜 = 𝑀 ∙
𝑃

2 ∙ 𝜋
 

  

(10) 

To use the f and g relationships in the elliptical format, the final time is also needed.  

The initial time, 𝑡𝑜, is the configuration at the start of the simulation. The final time, 𝑡𝑓 is some 

delta time, ∆𝑡, away from the initial position, 𝜃0
∗. The delta time can vary to increase and decrease 

the resolution of the simulation. The final time is computed in Equation (11).  

Once this value is calculated, the 𝜃𝑓
∗ value can be calculated and used in the f and g relationships. 

  

𝑡𝑓 =  𝑡𝑜 +  ∆𝑡 

  

(11) 

Next, the new mean anomaly can be calculated with Equation (12).  

  

𝑀𝑓 =  
2 ∙ 𝜋 ∙ 𝑡𝑓

𝑃
 

  

(12) 

The new eccentric anomaly can be calculated with Equation (13).  

  
𝐸𝑓 − 𝑒 ∙ sin(𝐸𝑓) = 𝑀𝑓 

 

(13) 

This equation requires an iterative Newtonian solver to compute. An example of an interactive 

solver that can compute this quantity can be found under algorithm 3.1 in Orbital Mechanics for 

Engineering Students.5 

The 𝜃𝑓
∗ value can be calculated with Equation (14). 

  

𝜃𝑓
∗ = 2 ∙ atan (tan (

𝐸𝑓

2
)) ∙ √

1 + 𝑒

1 − 𝑒
 

  

(14) 

 

All the variables are calculated that are necessary to compute the f and g values. The formulas 

for the f and g functions are Equations (15) and (16), respectively.  

 

𝑓 = 1 − 
𝑟

𝑝
[1 − cos (𝜃𝑓

∗ − 𝜃0
∗) ] (15) 



8 

 

  

𝑔 =  
𝑟𝑟0

√𝜇𝑝
sin (𝜃𝑓

∗ − 𝜃0
∗)𝑣𝑜̅̅ ̅ 

  

(16) 

The f and g functions can be combined, as shown in Equation (17). This equation represents the 

r vector, �̅�XYZ f, at the new position, 𝜃𝑓
∗, which is after a delta time has elapsed. 

  
�̅�XYZ f = 𝑓 ∙ �̅�XYZ + 𝑔 ∙ �̅�XYZ 

 

(17) 

The XYZ vector is currently in an Earth-centered reference frame, but this frame does not ac-

count for the rotation of the Earth as the X axis always points at the vernal equinox.  

An Earth-centered, Earth-fixed XYZ coordinate frame is needed. This frame requires the angle 

that the Earth has rotated through during the delta time between the 𝜃∗ values. This angle is defined 

in Equation (18). 

  
𝜃 =  𝜔𝐸(𝑡 − 𝑡0) 

  

(18) 

This 𝜃 value can be used in a new DCM to convert between the two XYZ frames, represented 

in Equation (19). This frame is necessary to plot the position of the satellite on a ground track as 

both the satellite and Earth’s surface have moved.  

  

DCM = [
cos(𝜃) sin(𝜃) 0

−sin(𝜃) cos(𝜃) 0
0 0 1

] 

  

(19) 

The transformation equation to move between the two frames is shown in Equation (20), using 

the DCM from Equation (19).  

  
�̅�XYZ f rot =  DCM ∙ �̅�XYZ f 

  

(20) 

An algorithm can be used to compute the right ascension and declination of the satellite, given 

the orbital elements and the current satellite position from Equation 20. This algorithm is an excerpt 

from algorithm 4.6 in Orbital Mechanics for Engineering Students.5 

Compute the magnitude of �̅�XYZ f rot using Equation (21). 

  

|�̅�XYZ f rot| =  √𝑟𝑋 𝑓 𝑟𝑜𝑡
2 + 𝑟𝑌 𝑓 𝑟𝑜𝑡

2 +  𝑟𝑍 𝑓 𝑟𝑜𝑡
2 

 

(21) 
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Compute the DCM of  �̅�XYZ f rot. In this case, the DCM is represented by individual equations, 

Equations (22) through (24), that will be used by later equations.  

 𝑙 =  
𝑟𝑋 𝑓 𝑟𝑜𝑡

|�̅�XYZ f rot|
  (22) 

 𝑚 =  
𝑟𝑌 𝑓 𝑟𝑜𝑡

|�̅�XYZ f rot|
  (23) 

 𝑛 =  
𝑟𝑍 𝑓 𝑟𝑜𝑡

|�̅�XYZ f rot|
  (24) 

Calculate the declination, 𝛿, with Equation (25).  

 

𝛿 = sin−1(𝑛) 

  

(25) 

Calculate the right ascension, 𝛼, with Equation (26).  

  𝛼 =  {
cos−1 (

𝑙

cos (𝛿)
),   (𝑚 > 0)

360 −  cos−1 (
𝑙

cos (𝛿)
) , (𝑚 < 0)

  (26) 

The 𝛼 and 𝛿 values can then be plotted on a Mercator projection of the Earth. The 𝛼 value is the 

angle measured from the vernal equinox along the equator. The 𝛿 value is the angular position of 

the object north or south of the equator.  

The observatory positions must also be written in a format that can be compared with the 𝛼, 𝛿, 

and XYZ values so equations can be written to establish when a satellite intersects with an obser-

vatory.  

The observatories have latitude and longitude values, which are analogous to 𝛼 and 𝛿 values. 

These latitude and longitude values can be transformed into XYZ coordinates by using the follow-

ing matrix.  

  

observatory̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
XYZ =  ⌈

𝑟Earth ∙ cos(lat) ∙ cos (lon)

𝑟Earth ∙ cos(lat) ∙ sin (lon)

𝑟Earth ∙ sin(lat)
⌉ 

  

(27) 

With the results from Equation (27), all the values required to compare the observatory position 

to the satellite position at any given time are known.  

This comparison is computed with a dot product angle. The angle represents the angular sepa-

ration of the two vectors. If the angle is 0, the satellite is directly above the observatory. This angle 

can be checked against determined field of view (FOV) angles to see if it impacts an observatory 

under different observing conditions. The dot product angle is calculated with Equation (28).  
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𝜃 = acos (
�̅�XYZ f rot  ⋅ observatory̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

XYZ

|observatory̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
XYZ| ⋅ |�̅�XYZ f rot|

) 

  

(28) 

This angle is evaluated at 1 degree, 5 degrees, and 10 degrees. The smallest grouping the angle 

fits into is where it is counted. The impact to an observatory is quantified by looking at the percent-

age of points that intersect with the observatory during nighttime.  

The final portion of the analysis involves reducing the amount of satellite observatory intersec-

tion data. This process includes determining which intersections occur during the day at each ob-

servatory because observing times can only be interrupted at visual telescopes when it is dark.  

The second reduction is determining if the satellite is reflecting the light of the sun. A satellite 

can only impact an observatory if it is dark and the satellite is reflecting sunlight. The reflected 

sunlight is what is picked up by the telescope and can be seen as satellite trails (see Figure 1).  

Carrying out the first reduction requires using the Julian Date (JD). The satellite constellations 

are conceptual, so their initial positions can be defined arbitrarily. The start date is chosen as De-

cember 1, 2023, at 6:00 pm UTC. Equation (29) converts this date to a JD. The time variables are 

y for years, m for months, and d for days. Where 𝑡UTC is the UTC time formatted in decimal hours. 

 

 𝐽0 = 367 ⋅ 𝑦 − INT {
7⋅(𝑦+INT(

𝑚+9

12
))

4
} +  INT (

275⋅𝑚

9
) +  d +  1721013.5 +

 𝑡UTC 

24
   

 

(29) 

The decimals of a JD output represent hours in a day. If the decimal is between 0.25 and 0.75, 

then it is dark out in UTC time. By using the information in Table 1, the decimals can be offset 

based on UTC plus or minus hour values. With this time zone offset, the local day and night can be 

established.  

To detect if the Earth is in shadow, the process outlined by Pedro Escobal in the 1976 text Meth-

ods of Orbit Determination is used.6 

This process assumes that the sun generates a cylinder, which is the diameter of Earth, that 

represents the shadow cast by the sun. Vector math is used to determine if the current satellite 

position is inside this cylinder. There are two conditions that need to be satisfied for the satellite to 

be considered in shadow. The first is the angle 𝜓. This angle is the angle between the sun vector 

and the Earth vector. The origin for both vectors is the center of the Earth. The sun vector is assumed 

to be in the direction [1 0 0]. The distance of the sun vector is the distance from the Earth to the 

sun. The satellite vector in XYZ is already known. Equation (30) shows the calculation of the angle 

𝜓.  

  

cos(𝜓) =
sunXYZ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ⋅ �̅�XYZ f

|sunXYZ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ | ⋅ |�̅�XYZ f|
 

  

(30) 
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When the cosine of 𝜓 is less than 0, the first condition is met.  

The second condition is that the a value is less than the radius of the Earth. The a value is equal 

to Equation (31).  (Note: This a value does not represent the semi-major axis.) 

  
𝑎 =  |�̅�XYZ f| ⋅ sin (𝜓) 

  

(31) 

When both the a value and the cos(𝜓) conditions are met, the satellite is in shadow.  

Assumptions and Limitations of the Method of Simulation 

There are assumptions in the model presented in this paper: 

• The Earth is assumed to be a perfect circle so that latitude and longitude conversions can 

easily be made for each of the observatories.  

• The altitude of the observatories is ignored although some of the chosen observatories are 

in mountainous terrain. 

• The Earth is assumed to be a point mass, an assumption that neglects any effects of the 

Earth’s oblateness.  

• To compute the time in shadow, the assumption that the Earth and sun both lie on the eclip-

tic plane is made.  

• To compute day and night, complete darkness from 6:00 pm to 6:00 am local time is as-

sumed. This means that all 24-hour days are considered to have 12 hours of absolute day-

light and 12 hours of absolute darkness.  

There are limitations to the model presented in this paper: 

• The smaller the delta time of the simulation, the more likely the simulation is to detect an 

intersection, but this small delta time causes the simulation to run significantly slower for 

longer data sets. 

• The reflectivity of the satellite is not considered. No matter the distance between the satel-

lite and observatory and their relative positions, if the conditions for an intersection are 

met, then the observatory can see the satellite.  

RESULTS 

The specific configuration used to generate the result data is outlined here. The conditions for 

simulating the LEO and MEO satellites were the same. The simulation time was 7 days with a delta 

time step of 5 sec. For the FOV grading, half angles of 0.5, 2.5, and 5 degrees were used. 
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LEO Results  

Figure 4 shows the set of satellite orbits from an Earth-fixed nonrotating frame. This plot is a 

check to ensure that the orbits are correctly matching what the CBO theoretical constellation spec-

ified.  

 

Figure 4. LEO Orbit Track Simulation Result. 

Figure 5 is a plot detailing the coverage of the satellite constellation by overlaying the XYZ 

Earth-rotation adjusted coordinates over a sphere representing Earth. The observatories are also on 

this plot, but they are not visible due to the density of points. 

  

Figure 5. LEO Orbit Coverage Simulation Result. 

The plot shown in Figure 6 is a detailed ground track. The black dots are the observatories. The 

satellite ground track points are so dense they appear as one block of color. 
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Figure 6. LEO Orbit Ground Track Simulation Result. 

The set of images in Figures 7 through 11 shows the satellites that intersect each observatory 

and the data reduction associated with the analysis. The leftmost plot shows all the intersections, 

the middle plot includes the satellites that are illuminated, and the last plot shows the satellites that 

are illuminated while the observatory is in darkness. The red points are the intersections within 1 

degree FOV, the blue points are the intersections within 5 degrees, and the green points are the 

intersections within 10 degrees.  

 

Figure 7. LEO Observatory 1 Intersections.  
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Figure 8. LEO Observatory 2 Intersections. 

 

Figure 9. LEO Observatory 3 Intersections. 

 

Figure 10. LEO Observatory 4 Intersections. 
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Figure 11. LEO Observatory 5 Intersections. 

MEO Results  

Figure 12 shows the set of satellite orbits from an Earth-fixed nonrotating frame. This plot is a 

check to ensure that the orbits are correctly matching what the CBO theoretical constellation spec-

ified.  

 

Figure 12. MEO Orbit Track Simulation Result. 

Figure 13 is a plot detailing the coverage of the satellite constellation by overlaying the XYZ 

Earth-rotation adjusted coordinates over a sphere representing Earth. The observatories are also on 

this plot and are visible unlike with the LEO plot. 
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Figure 13. MEO Orbit Coverage Simulation Result. 

Figure 14 is a detailed ground track. The black dots are the observatories. The satellite ground 

track points are so dense they appear as one block of color.  

 

Figure 14. MEO Orbit Ground Track Simulation Result. 

The set of images in Figures 15 through 19 shows the satellites that pass through each observa-

tory and the data reduction associated with the analysis. The leftmost plot shows all the intersec-

tions, the middle plot includes the satellites that are illuminated, and the last plot shows the satellites 

that are illuminated while the observatory is in darkness. The red points are the intersections within 

1 degree FOV, the blue points are the intersections within 5 degrees, and the green points are the 

intersections within 10 degrees. Unlike with the LEO plots, the MEO plots do not show a reduction 

in intersections based on illumination.   
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Figure 15. MEO Observatory 1 Intersections. 

 

Figure 16. MEO Observatory 2 Intersections. 

 

Figure 17. MEO Observatory 3 Intersections. 
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Figure 18. MEO Observatory 4 Intersections. 

 

Figure 19. MEO Observatory 5 Intersections. 

Tabulated Results  

The tabulated results, shown in Tables 2 and 3, are derived from the plots above. The percentage 

value is calculated by counting all of the intersected points, with all of the points in darkness for 

each observatory. The percentage is denoted as % FOV X, and the count is denoted as # FOV X. 

The hours lost, FOV X Hrs Lost, is computed by multiplying the number of intersected points by 

the delta time, then converting the result into hours. These hours lost are over a 7-day period of 

nights, which is 84 hours.  
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Table 2. LEO Results Table. 

 FOV 1 FOV 5 FOV 10 

Loc. % # Hrs Lost % # Hrs Lost % # Hrs Lost 

1 0.079 48.000 0.067 1.763 1066.000 1.481 5.517 3337.000 4.635 

2 0.067 27.000 0.038 1.319 532.000 0.739 4.052 1634.000 2.269 

3 0.056 34.000 0.047 1.442 872.000 1.211 4.697 2841.000 3.946 

4 0.051 31.000 0.043 1.539 931.000 1.293 5.058 3059.000 4.249 

5 0.076 46.000 0.064 1.913 1157.000 1.607 5.969 3610.000 5.014 

Note: Loc. = location.     

Table 3. MEO Results Table. 

 FOV 1 FOV 5 FOV 10 

Loc. % # Hrs Lost % # Hrs Lost % # Hrs Lost 

1 0.020 12.000 0.017 0.410 248.000 0.344 1.316 796.000 1.106 

2 0.012 5.000 0.007 0.387 156.000 0.217 1.203 485.000 0.674 

3 0.018 11.000 0.015 0.466 282.000 0.392 1.445 874.000 1.214 

4 0.018 11.000 0.015 0.479 290.000 0.403 1.516 917.000 1.274 

5 0.021 13.000 0.018 0.511 309.000 0.429 1.619 979.000 1.360 

 

CONCLUSION 

Clearly, both LEO and MEO constellations impact observatories through the loss in usable hours. 

Because the LEO constellation has more satellites than the MEO constellation, it had three to five 

times more intersections on average than the MEO constellation and approximately the same factor 

in observatory time lost due to intersections.  

The illumination of the satellites did not affect MEO satellites as they have significantly more 

altitude than the LEO satellites, which were affected as they spend more time in Earth’s shadow.  

However, the plots show that the duration of the satellite passes affects the usable observatory 

time. This effect is more pronounced with LEO satellites than with MEO satellites as LEO satellites 

are more frequently over the observing sites, even though they travel faster than the MEO satellites.  

The impact to the observatories in Table 1 will hinder astronomy as the deep FOV observatories 

are critical to new discoveries. They are the most sensitive due to wide FOVs and large apertures, 

which let in more light. However, when taking into account only one LEO and one MEO constel-

lation, the effects for the observatories over the 84 hours of darkness are small, with the maximum 

number of hours lost at around 5 hours and the minimum mere minutes. This result is highly con-

servative as there are multiple existing LEO and MEO constellations with more being launched. A 

simulation that includes all existing LEO and MEO constellations would show a further decrease 

in the usable observatory hours. 

A further impact of LEO and MEO constellations on observatories is a reduction in the ability 

to conduct long exposures. The spacing of hours lost (shown on Figures 7 through 11 and Figures 

15 through 19) indicates that the frequent passes of satellites have shrunk long observing windows.  
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