


Method of Analysis  

To build up to the complex two tank system, the tanks are first modeled and simulated 

individually.  

Below is shown the schematic of both tanks.  

Tank 1:  Tank 2: 

Figure 1: side by side schematic of each tank present in the system.  

Shown above are the two tanks, the key to the analysis is the use of conservation principles. 

Specifically, in this case the application of conservation of mass rate form and conservation of 

energy finite form. A1 and A2 are the tanks’ respective surface areas. b1 and b2 are the tanks’ 

respective inner wall heights. a1 and a2 are the tank’s respective drain pipe lengths. d1 and d2 are 

the tank’s respective outlet diameters. Cd1 and Cd2 are the tanks’ respective orifice discharge 

coefficients. Before applying any conservation principles, the free body diagrams must be 

defined for each tank.  

Tank 1 FBD:  

 

 

Tank 2 FBD: 

 

 

 

Figure 2: side by side free body diagram of each tank present in the system.  

 

𝐴(ℎ)
𝑑ℎ

𝑑𝑡
=  ∀̇𝑖𝑛 −  ∀̇𝑜𝑢𝑡  (1.1) 

 

g
ra

v
it

y
 

∀̇𝑜𝑢𝑡1 
∀̇𝑜𝑢𝑡2 

① 

 
① 

 

② 
② 



Shown above is the incompressible flow version of the rate form of conservation of mass 

equation. Applying this equation to the free body diagrams yields the following (tank 1 then tank 

2). 

𝐴1⦁
𝑑ℎ

𝑑𝑡
=  − ∀̇𝑜𝑢𝑡1 (1.2) 

𝐴2⦁
𝑑ℎ

𝑑𝑡
=  − ∀̇𝑜𝑢𝑡2 (1.3) 

Where  
𝑑ℎ

𝑑𝑡
 is the change in height of the water level of the tank with respect to time. Using the 

orifice volume flow rate equation which is derived from the modified Bernoulli equation, a 

formula for  ∀̇𝑜𝑢𝑡 can be derived.  

∀̇𝑜𝑢𝑡= 𝐴𝑜𝑢𝑡⦁𝐶𝑑⦁√
2

𝜌
⦁((𝑃1 − 𝑃2) +  𝜌⦁𝑔⦁(𝑧1 − 𝑧2)) (2.1) 

The pressure at point 1 and point 2, 𝑃1 and 𝑃2 respectively are equal. 𝜌 is the density of water. 

Lastly, 𝑧1 and 𝑧2 are the heights of each Bernoulli point relative to the datum. The datum in this 

scenario is the bottom of the output pipe, not the bottom of the tank. The reduced orifice volume 

flow rate equation is shown below for tank 1 and tank 2 respectively.  

∀̇𝑜𝑢𝑡1= 𝐴𝑜𝑢𝑡1⦁𝐶𝑑1⦁√2⦁𝑔⦁(𝑧1,𝑡𝑎𝑛𝑘1 − 𝑧2,𝑡𝑎𝑛𝑘1)(2.2) 

 

∀̇𝑜𝑢𝑡2= 𝐴𝑜𝑢𝑡2⦁𝐶𝑑2⦁√2⦁𝑔⦁(𝑧1,𝑡𝑎𝑛𝑘2 − 𝑧2,𝑡𝑎𝑛𝑘2) (2.3) 

Next equations 1.1 and 1.2 are combined with 2.2 and 2.3 to form the model equations for both 

tanks.  

𝐴1⦁
𝑑ℎ1

𝑑𝑡
=  −𝐴𝑜𝑢𝑡1⦁𝐶𝑑1⦁√2⦁𝑔⦁(𝑧1,𝑡𝑎𝑛𝑘1 − 𝑧2,𝑡𝑎𝑛𝑘1) (3.1) 

 

𝐴2⦁
𝑑ℎ2

𝑑𝑡
=  −𝐴𝑜𝑢𝑡2⦁𝐶𝑑2⦁√2⦁𝑔⦁(𝑧1,𝑡𝑎𝑛𝑘2 − 𝑧2,𝑡𝑎𝑛𝑘2)(3.2) 

To simply these equations, further substitutions of known variables for the distances are 

necessary. Due to the location of the datum, a height must be added anytime the distance relative 

to the bottom of the tank is referenced. This happens twice in each final equation. The offset 

distance between the bottom of the tank and the outlet orifice is 𝑎1 and 𝑎2 for tank 1 and 2 

respectively. This offsetting of dimensions does not apply for the distance from the bottom of the 

orifice to the datum as this distance is 0.  

 

𝐴1⦁
𝑑ℎ1

𝑑𝑡
+ 𝑎1 =  −𝐴𝑜𝑢𝑡1⦁𝐶𝑑1⦁√2⦁𝑔⦁(0 − (ℎ1 + 𝑎1))(3.3) 

 



𝐴2⦁
𝑑ℎ2

𝑑𝑡
+ 𝑎2 =  −𝐴𝑜𝑢𝑡2⦁𝐶𝑑2⦁√2⦁𝑔⦁(0 − (ℎ2 + 𝑎2)) (3.4) 

To solve the equations, integrate both sides.  

∫
𝑑ℎ1

√ℎ1+𝑎1

ℎ1(𝑡)

ℎ𝑜1
=  ∫

−𝐴𝑜𝑢𝑡1⦁𝐶𝑑1⦁√2⦁𝑔

2⦁𝐴1

𝑡

0
𝑑𝑡 − 𝑎1 (3.5) 

∫
𝑑ℎ2

√ℎ2+𝑎2

ℎ2(𝑡)

ℎ𝑜2
=  ∫

−2⦁𝐶𝑑2⦁√2⦁𝑔

2⦁𝐴2

𝑡

0
𝑑𝑡 − 𝑎2 (3.6) 

The result of this integration is used to compute the Cd values for each tank. The values from 

these equations are essential to ensuring that the double tank model reflects the gathered data as 

accurately as possible. ℎ𝑜1 and ℎ𝑜2 are the heights from the bottom of each respective tank.  

 

ℎ𝑡 (𝑡) = (√ℎ𝑜1 + 𝑎 −  
𝐶𝑑1⦁𝐴𝑜𝑢𝑡1⦁√2⦁𝑔

2⦁𝐴1
⦁𝑡)2 − 𝑎1 (3.7) 

ℎ𝑡 (𝑡) = (√ℎ𝑜2 + 𝑎 −  
𝐶𝑑2⦁𝐴𝑜𝑢𝑡2⦁√2⦁𝑔

2⦁𝐴2
⦁𝑡)2 − 𝑎2 (3.8) 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Free body diagram of both tanks. 
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Once the tanks have been modeled individually the transition to a double tank system is 

straightforward. Recall equations 1.2 and 2.3 for conservation of mass rate form. Simply equate 

the new tank 2 inlet volumetric flowrate with the outlet volumetric flowrate from tank 1 and the 

double tank draining simulation equations have been fully derived. The tank 1 outlet flow rate 

was derived in equations 3.3 and 3.4.  

𝑑ℎ1

𝑑𝑡
= − 

𝐴𝑜𝑢𝑡1⦁𝐶𝑑1⦁√2⦁𝑔⦁(ℎ1+𝑎1)

𝐴1
 (4.1) 

 

𝑑ℎ2

𝑑𝑡
=  ∀̇𝑖𝑛2 −   

𝐴𝑜𝑢𝑡2⦁𝐶𝑑2⦁√2⦁𝑔⦁(ℎ2+𝑎2)

𝐴2
 (4.2) 

 

 ∀̇𝑖𝑛2=  
𝐴𝑜𝑢𝑡1⦁𝐶𝑑1⦁√2⦁𝑔⦁(ℎ1+𝑎1)

𝐴1
 (4.3) 
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